
Michael Maniscalco
email: michael@michael-maniscalco.com
github (compression and algorithm projects): github.com/michaelmaniscalco
github (c++ software architecture projects): github.com/buildingcpp
linkedin: www.linkedin.com/in/michael-a-maniscalco
website: www.michael-maniscalco.com

Veteran C++ developer, software architect and innovator with extensive experience in:

• low latency software development.
• greenfield architecture development.
• concurrency, multi-threading and lock-free/wait-free algorithms.
• generic programming and template meta programming.
• networking, kernel bypass etc.
• algorithm development, data compression, sorting, searching.
• authoring software for distributed architectures.

Portfolio:

github.com/michaelmaniscalco
github.com/buildingcpp

I maintain many github repositories which, I believe, are the strongest representation of my abilities as a
software architect as well as as a C++ developer. I encourage readers to review these repositories in order to
understand and gauge my skill set. Please see the “Portfolio: github, algorithms, research & inventions” section
of this document for a more detailed description of some of these works.

Lime FinTech
Architect & Principal Developer
December 2020 - present

Primary Roles and Responsibilities:

Architected and implemented next generation low latency market data product:

• Highly deterministic sub-microsecond low latency performance.
• Responsible for all architectural decisions.
• Responsible for authoring the entire code base.
• Responsible for all documentation.
• Responsible for all early client interaction and support.
• Project produced a large collection of libraries, each designed to provide specific functionality such as

kernel interaction (file descriptors, shared memory, asynchronous threading, etc), networking, basic
framework for building distributed architecture, messaging, configuration, licensing, custom
logging/instrumentation library, asynchronous shared memory/file backed storage, etc.

mailto:michael@michael-maniscalco.com
http://github.com/michaelmaniscalco
https://www.github.com/buildingcpp
http://github.com/michaelmaniscalco
https://www.michael-maniscalco.com/
https://www.linkedin.com/in/michael-a-maniscalco/
https://www.github.com/buildingcpp
https://github.com/michaelmaniscalco

• Highly asynchronous architecture with virtually no locking:
Employed my ‘Work Contract’ asynchronous library to make virtually all processing asynchronous. My
work contract approach also facilitates lock free designs - which is heavily exploited in the products that I
have built for Lime.

• Restructured networking (kernel and ef_vi) library for reduced latency:
Updated my previously developed networking library to be even lower latency and coupled with my
work_contract based asynchronous library.

• New messaging library and protocol parsers (heavy template meta programming):
Extremely robust, trivially easy to use, messaging library using template meta programming, compile
time hashing and message routing for ultra low latency message parsing and marshaling. TMP based
pattern for easily defining new protocols and the messages of those protocols. Lock free multi-producer
message streams.

• Distributed architecture:
Created an entire suite of specialized services in a distributed architecture to manage low latency
managed/non display multicast market data, book snapshots, multicast recordings and packet
retransmits, reference data, etc.

Lime Brokerage
Director of Engineering / Trade and Execution Services Division
November 2017 - February 2019

Primary Roles and Responsibilities:

Director for C++ engineering division - Market Data and Trading Server products as well as continuing to serve
as lead architect for time frame listed below (July 2015-February 2019)

Lime Brokerage
Principal Software Engineer and Lead Architect
July 2015 - February 2019

Primary Roles and Responsibilities:

Lead architect, lead developer and mentor. Designed and implemented the company's next generation ultra-low
latency market data product, "Citrius Direct". This project represented an entirely new code base designed
specifically for this product (and subsequently migrated into existing products as needed). I worked almost
exclusively on this project for about two years and was responsible for all architecture, design, documentation,
and pretty much every line of code in the code base. The resulting work is an ultra low latency market data feed
normalization product with an average market message latency of 750ns (from NIC to client API interface on
fairly typical hardware). This projected included:

• A complete networking library including ef_vi kernel bypass:
Authored a highly scalable networking library with support for kernel and ef_vi kernel bypass.

• Custom memory allocators:
Developed a memory management library exploiting compile time information in combination with lock
free programming and thread local storage to produce an incredibly efficient and scalable memory
allocator.

• Exchange market feed protocol parsers:
Developed a technique for parsing and marshaling the various financial exchanges' market feed
protocols with ultra-low latency (5-10ns / message).

• Super simple, compile time messaging transport:
Developed an incredibly easy to use messaging transport system for inter-process/inter-machine
communication using compile time hashing to mark multi-part/multi-protocol messaging between ultra-
low latency systems across a single transport stream.

• Non locking data structures and novel custom shared locking techniques:
Developed a shared locking technique which exploits single thread per core architectures to heavily
favor reader locks to eliminate contention for atomic share lock counts and authored a large library of
lock free container classes.

• Shared memory sockets for inter-process communications:
IPC sockets were way too slow for sub-micro second message processing across processes so I wrote
a complete solution for inter-process communication which emulates UDP sockets using shared
memory.

• Ultra-low latency logging and software profiling library:
Employed my Glimpse library to profile and tune the entire project. Without the Glimpse tool there is no
way to test/measure/tune/iterate with such precision. Using Glimpse I was able to make tiny changes in
the code and quickly measure nanosecond level changes in performance over hundreds of millions of
samples with ease allowing me to tune the product in a real world environment and with total confidence.

• Extensive use of template meta-programming (when needed):
Made extensive use of TMP where needed to gain the efficiency needed to achieve sub-micro
second/message performance. Such techniques were used in memory allocation/deallocation, message
transports, protocol parsing, inter-machine endian ordering management, etc. In every such instance,
great care was taken to ensure that the code complexities introduced by TMP were contained behind an
easy to use, easy to maintain, facade.

Hydrolix
Principal Software Developer
November 2019 - October 2020

Primary Roles and Responsibilities:

Principal software developer for stealth mode start up.

• M99b integer compression algorithm:
Invented a variation of my M99 compression algorithm, employing SIMD, to achieve high compression
and high speed integer compression. Implemented many filters to improve compression based on
apriori knowledge of the input data (sorted, strictly sorted, etc).

• Metrics agent:
Developed process which collects metrics streamed from the main process. Forward metrics from there
via HTTP requests to external consumer.

Saleae
Software Architect
February 2019 - August 2019

Primary Roles and Responsibilities:

Developing features for next generation of company's “Logic” application. Built module for on the fly storage and
retrieval of recording of live streams of data (form hardware) for use in the “Logic” protocol analyzer software.

Viasat - (Formerly "Intelligent Compression Technologies")
Senior Software Engineer - Acceleration and Research Technologies Division
January 2002 - July 2015

Primary Roles and Responsibilities:

Senior Engineer responsible for algorithm development including all compression related software, various
proprietary hashes, string pattern matching algorithms, language parsers, etc. I was generally responsible for
any aspect of the division's products which have either high demands in time or space and for any features
which require specific coding optimizations to meet such demands. I was also generally involved in most
architectural issues. I was with this company (and the original start up) for well over a decade and was
responsible for a lot of features and design decisions during that time.

• Data Compression Suite:
Authored the company's compression library including custom implementations of LZ77, LZP,
PPMd/PPMII, Huffman, massive scale delta compression, block delta and predictive block delta
algorithms.

• Delta Compression Algorithm and Patent:
Invented and authored the company's massive scale delta compression algorithm. A system of
identifying similar (not necessarily duplicate) data from a massive repository with high speed and
applying it as reference data to achieve dynamic delta compression. This compression engine serves as
a core piece of the company's WAN accelerator. This algorithm was granted patent #US8010705B1
"Methods and systems for utilizing delta coding in acceleration proxy servers." The algorithm is the
underlying delta compression engine used in Cisco's software solution for WAN acceleration.

• "Associative" HTTP Prefetching:
Invented a neural networking approach for predictive HTTP object prefetching for use in HTTP
acceleration over high latency networks. This work is capable of identifying previously recorded HTTP
experiences from a massive database which might contain similarities to the current experience and
then blending these data to produce predictions of future HTTP requests and responses.

• Video Predictive Block Compression Algorithm:
Authored the company's 'predictive block delta' compression algorithm which is currently used for video
over HTTP acceleration with high latency connections. This project involved designing a storage
solution for use with flash RAM which evenly distributes writes across the physical medium to maximize
the storage medium's useful lifespan, inventing algorithms to identify HTTP video streams in real time
from any starting position, locating similar content in a local cache and maintaining HD video download
rates using < 80KB of RAM to achieve near 100% compression rates over high latency networks.

• HTTP Protocol Modeling and Compression:
Wrote the HTTP protocol parsing/modeling code which is at the core of the company's "Exede" HTTP
web accelerator as well as in the Australian Government's NBN project for satellite internet.

• Outlook Acceleration:
Studied and reverse engineered Microsoft's Outlook/MAPI protocol (long before they released the
specification) and built the company's Outlook accelerator for WANs.

Portfolio: github, algorithms, research & inventions
Contributions to computer science, open source projects, independent research, compression and sorting
algorithms

• Glimpse - ultra low latency instrumentation/logging/data visualization:
[github private - available on request]

Ultra high performance “type rich” application instrumentation and graphical analysis tools. This software
can instrument C++ applications with incredibly low overhead (8ns-20ns per sample) and provide
unbelievably rich, streaming, object oriented, real time instrumentation data which can be sampled,
visualized, and mined by powerful visualization tools.

• M99 - High performance BWT compressor:
github.com/michaelmaniscalco/m99

I am the inventor of the M99 entropy encoding algorithm. Originally developed in 1999 as an entropy
coder for the Burrows/Wheeler transform, this algorithm is a wavelet based entropy encoder specialized
for encoding data which contains locally skewed symbol probabilities. It is a very simple, extremely fast,
low memory encoding scheme which is highly effective on the right types of data (such as BWT data).

• M03 - First and only “context aware” BWT compression algorithm:
github.com/michaelmaniscalco/m03

I am the inventor of the M03 context based BWT compression algorithm. M03 is a progressive encoding
scheme that achieves the highest compression of any generic Burrows/Wheeler based compressor. This
is the only algorithm to date which can encode the Burrows Wheeler Transform with respect to the
contexts contained in the original pre-transformed data. It is a fast, low memory compressor and has
appeared in the paper "Post BWT Stages of the Burrows/Wheeler Compression Algorithm" by Dr
Jeurgen Abel.

http://www.michael-maniscalco.com/download/Preprint_Post_BWT_Stages.pdf
https://github.com/michaelmaniscalco/m03
https://github.com/michaelmaniscalco/m99
https://github.com/michaelmaniscalco/m99

• work contract library:
github.com/buildingcpp/system

A simple, low latency, threading and asynchronous task management system. Benchmarks show that
this unique approach to asynchronous tasks vastly outperforms existing methods and is especially well
suited for use in ultra low latency systems.

• network library:
github.com/buildingcpp/network

A simple, easy to use network library designed to showcase “work contracts”.

• MSufSort - suffix array construction algorithm:
github.com/michaelmaniscalco/msufsort

MSufSort represented a large amount of my non-professional programming time. Over the years I have
invented many specialized algorithms which have preserved MSufSort as the state of the art. When it
was first introduced, MSufSort was 2-3x faster than the previous state of the art. The algorithm is
described in the paper "An Efficient, Versatile Approach to Suffix Sorting", ACM Journal of Experimental
Algorithmics Volume 12, Article 1.2 as well as in the paper “Faster Lightweight Suffix Array Construction”
and is cited in numerous academic papers and journals . The most recent version of MSufSort (v4 alpha)
achieves highly parallel suffix array construction which easily outperforms any existing suffix array
construction solution by great margins. The work, however, remains incomplete and in alpha state.

• RLE-EXP - Exponential run length encoding:
www.michael-maniscalco.com/download/10.1.1.12.5317.pdf

Inventor of the RLE-EXP (exponential run length encoding algorithm). Since its first appearance in 2001
this simple enhancement on basic run length encoding has become a defacto standard encoding stage
for many modern BWT compressors. RLE-EXP also appears in Dr Jeurgen Abel's paper "Improvements
to the Burrows-Wheeler Compression Algorithm: After BWT Stages"

http://www.michael-maniscalco.com/download/10.1.1.12.5317.pdf
http://www.michael-maniscalco.com/download/10.1.1.12.5317.pdf
http://www.michael-maniscalco.com/download/10.1.1.12.5317.pdf
http://scholar.google.com/scholar?hl=en&q=msufsort&btnG=&as_sdt=1%2C22&as_sdtp=
http://scholar.google.com/scholar?hl=en&q=msufsort&btnG=&as_sdt=1%2C22&as_sdtp=
http://www.michael-maniscalco.com/download/10.1.1.184.56.pdf
https://github.com/michaelmaniscalco/msufsort
https://www.github.com/buildingcpp/network
https://www.github.com/buildingcpp/system

Publications:

• An Efficient, Versatile Approach to Suffix Sorting:
Maniscalco & Puglisi - ACM Journal of Experimental Algorithmics Volume 12, Article 1.2
http://www.michael-maniscalco.com/download/10.1.1.184.56.pdf

• Faster Lightweight Suffix Array Construction:
Maniscalco & Puglisi - 17th Australasian Workshop on Combinatorial Algorithms (AWOCA'06)
http://www.michael-maniscalco.com/download/10.1.1.183.9182.pdf

Patents:

• Methods and systems for utilizing delta coding in acceleration proxy servers:
Patent #US8010705B1

This patent covers the delta compression algorithms used in the Viasat WAN accelerator product. The
basic algorithm is capable of identifying sources which are similar (not necessarily identical) with
exceptionally high speed and accuracy. Similar sources are then used as reference dictionaries to
achieve extremely high compression ratios.

• Selective prefetch scanning:
Patent #US9407717B1

This patent covers a method for scanning HTML and similar response data and predicting subsequent
HTTP request produced by the browser which renders the data. These predictions are used to "pre-
fetch" these HTTP requests and then position the response data closer to the requester in order to
reduce page load times over high latency networks.

https://www.google.com/patents/US9407717?dq=ininventor:
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDQQFjAA&url=http%3A%2F%2Fwww.google.com%2Fpatents%2FUS8010705&ei=XJY3UsumLoe44AOAioDwCQ&usg=AFQjCNHQr3XX_mlj7_0Z_Jd0ZVU72vcAfA&bvm=bv.52164340,d.dmg
http://www.michael-maniscalco.com/download/10.1.1.183.9182.pdf
http://www.michael-maniscalco.com/download/10.1.1.184.56.pdf

